<div class> <p> <br/> 姓名:易泰山 性别:男 导师类别:硕士生导师<br/> <br/> 职称职务:副教授 最后学历:博士研究生 学位:理学博士<br/> <br/> 学习经历 :</strong><br/> <br/> 1999年6 月获得湖南大学学士学位,2004年12月获得湖南大学理学博士学位。</p> <p> <span id style> </span> 工作经历 :</strong><br/> <br/> 2005年2月留校任教,2006年 9月至2008年8月,先后在加拿大Western Ontario大学、Wilfrid Laurier大学和York大学从事博士后研究工作。<br/> <br/> 研究领域:</strong><br/> <br/> 研究方向:动力系统与微分方程<br/> <br/> 课题(包含近期主持、主研主要教学科研项目) :<br/> <br/> (负责人)</strong><br/> <br/> 1、单调动力系统的推广理论及其在泛函微分方程中的应用,国家自然科学基金,2009.1-2011.12<br/> <br/> 2、伪单调离散动力系统的动力学及其应用,湖南省自然科学基金,2008.01-2010.12<br/> <br/> 3、2008年教育部“新世纪优秀人才计划”</p> <p> 科研成果:<br/> <br/> 获奖:</strong><br/> <br/> 论文《乘积序拓扑空间中伪单调半流的收敛性》 获得了湖南省第十一届自然科学优秀学术论文一等奖</p> <p> 公开出版的著作、教材或论文:<br/> <br/> 部分论文(第一作者):<br/> <br/> Threshold dynamics of a delayed reaction diffusion equation subject to the Dirichlet condition,Journal of Biological Dynamics, 3(2009), no.2, 1751-3766, 331 – 341<br/> <br/> Generic quasi-convergence for essentially strong order-preserving semiflows, Canadian Mathematical Bulletin, 52(2009) no.2, 315-320<br/> <br/> Convergence for essentially strongly increasing discrete-time semiflows,Rocky Mountain Journal of Mathematics,39 (2009), no.3, 1013-1034<br/> <br/> New generic quasi-convergence principles with applications,Journal of Mathematical Analysis and Applications,353(2009), no.1, 178-185)<br/> <br/> Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case, J. Differential Equations , 245(11),2008, 3376-3388. (SCI)<br/> <br/> A generalization of the Haddock conjecture and its proof. Nonlinear Anal. Real World Appl. 9 (2008), no. 3, 1112--1118<br/> <br/> Dynamics of smooth essentially strongly order-preserving semiflows with application to delay differential equations. J. Math. Anal. Appl. 338 (2008), no. 2, 1329--1339<br/> <br/> Convergence of a class of discrete-time semiflows with application to neutral delay differential equations. Nonlinear Anal. 68 (2008), no. 5, 1148--1154<br/> <br/> Asymptotic behavior of solutions to a class of systems of delay differential equations. Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 8, 1375--1384<br/> <br/> A generalization of the Bernfeld-Haddock conjecture and its proof. (Chinese) Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 2, 261--270)<br/> <br/> Asymptotic behavior of solutions for a class of systems of delay difference equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13 (2006), no. 5, 537--549<br/> <br/> Convergence and stability for essentially strongly order-preserving semiflows. J. Differential Equations 221 (2006), no. 1, 36--57<br/> <br/> Convergence for pseudo monotone semiflows on product ordered topological spaces. J. Differential Equations 214 (2005), no. 2, 429--456<br/> <br/> Convergence of solutions to a class of systems of delay differential equations. Nonlinear Dyn. Syst. Theory 5 (2005), no. 2, 189--200<br/> <br/> Convergence of a class of discrete-time semiflows with applications to difference systems. Appl. Math. Lett. 18 (2005), no. 6, 649--655<br/> <br/> Periodic solutions of difference equations. J. Math. Anal. Appl. 286 (2003), no. 1, 220--229</strong></p> </div>